27 research outputs found

    Pure Nash Equilibria and Best-Response Dynamics in Random Games

    Full text link
    In finite games mixed Nash equilibria always exist, but pure equilibria may fail to exist. To assess the relevance of this nonexistence, we consider games where the payoffs are drawn at random. In particular, we focus on games where a large number of players can each choose one of two possible strategies, and the payoffs are i.i.d. with the possibility of ties. We provide asymptotic results about the random number of pure Nash equilibria, such as fast growth and a central limit theorem, with bounds for the approximation error. Moreover, by using a new link between percolation models and game theory, we describe in detail the geometry of Nash equilibria and show that, when the probability of ties is small, a best-response dynamics reaches a Nash equilibrium with a probability that quickly approaches one as the number of players grows. We show that a multitude of phase transitions depend only on a single parameter of the model, that is, the probability of having ties.Comment: 29 pages, 7 figure

    Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa

    Get PDF
    Allopatric speciation requiring an unbroken period of geographical isolation has been the standard model of neo-Darwinism. While doubts have been repeatedly raised, strict allopatry without any gene flow remains a plausible mechanism in most cases. To rigorously reject strict allopatry, genomic sequences superimposed on the geological records of a well-delineated geographical barrier are necessary. The Strait of Malacca, narrowly connecting the Pacific and Indian Ocean coasts, serves at different times either as a geographical barrier or a conduit of gene flow for coastal/marine species. We surveyed 1,700 plants from 29 populations of five common mangrove species by large scale DNA sequencing and added several whole-genome assemblies. Speciation between the two oceans is driven by cycles of isolation and gene flow due to the fluctuations in sea level leading to the opening/closing of the Strait to ocean currents. Because the time required for speciation in mangroves is longer than the isolation phases, speciation in these mangroves has proceeded through many cycles of mixing-isolation-mixing, or MIM cycles. The MIM mechanism, by relaxing the condition of no gene flow, can promote speciation in many more geographical features than strict allopatry can. Finally, the MIM mechanism of speciation is also efficient, potentially yielding mn (m>1) species after n cycles

    Convergent adaptation of the genomes of woody plants at the land-sea interface

    Get PDF
    Sequencing multiple species that share the same ecological niche may be a new frontier for genomic studies. While such studies should shed light on molecular convergence, genomic-level analyses have been unsuccessful, due mainly to the absence of empirical controls. Woody plant species that colonized the global tropical coasts, collectively referred to as mangroves, are ideal for convergence studies. Here, we sequenced the genomes/transcriptomes of 16 species belonging in three major mangrove clades. To detect convergence in a large phylogeny, a CCS+ model is implemented, extending the more limited CCS method (convergence at conservative sites). Using the empirical control for reference, the CCS+ model reduces the noises drastically, thus permitting the identification of 73 convergent genes with P-true (probability of true convergence) > 0.9. Products of the convergent genes tend to be on the plasma membrane associated with salinity tolerance. Importantly, convergence is more often manifested at a higher level than at amino-acid (AA) sites. Relative to >50 plant species, mangroves strongly prefer 4 AAs and avoid 5 others across the genome. AA substitutions between mangrove species strongly reflect these tendencies. In conclusion, the selection of taxa, the number of species and, in particular, the empirical control are all crucial for detecting genome-wide convergence. We believe this large study of mangroves is the first successful attempt at detecting genome-wide site convergence

    Technique for Using Spent Mushroom Substrate of Flammulina velutipes to Cultivate Volvariella volvacea in Idle Period of Greenhouse Summer Squash

    No full text
    Greenhouse summer squash is a major type of greenhouse vegetable in Shandong Province. In summer, there is a three-month idle period of greenhouse summer squash. Volvariella volvacea is a high temperature resistant high-quality edible fungus. In practice, it is able to use the spent mushroom substrate of Flammulina velutipes to cultivate V. volvacea. In the idle period of greenhouse summer squash, cultivating V. volvacea using the spent mushroom substrate of F. velutipes has high economic and environmental benefits. The cultivation techniques mainly include the preparation of cultivation materials, preliminary preparation for the greenhouse, planting management of V. volvacea, and returning the spent mushroom substrate to the field. By comparison with the conventional summer squash planting, this technique has higher economic benefits and its application prospects will be broad

    Inhibition of EZH2 Ameliorates Sepsis Acute Lung Injury (SALI) and Non-Small-Cell Lung Cancer (NSCLC) Proliferation through the PD-L1 Pathway

    No full text
    (1) Background: Both sepsis acute lung injury (SALI) and non-small-cell lung cancer (NSCLC) are life-threatening diseases caused by immune response disorders and inflammation, but the underlining linking mechanisms are still not clear. This study aimed to detect the shared gene signature and potential molecular process between SALI and NSCLC. (2) Methods: RNA sequences and patient information on sepsis and NSCLC were acquired from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was used to build a co-expression network associated with sepsis and NSCLC. Protein–protein interaction (PPI) analysis of shared genes was intuitively performed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The involvement of EZH2 in the tumor immune microenvironment (TIME) and sepsis immune microenvironment (IME) was assessed by R software. Western blot, flow cytometry, and other in vitro assays were performed to further confirm the function and mechanism of EZH2 in NSCLC and SALI. (3) Results: WGCNA recognized three major modules for sepsis and two major modules for NSCLC, and there were seven shared genes identified for the two diseases. Additionally, the hub gene EZH2 was screened out. It was shown that EZH2 was closely related to the IME in the two diseases. In the validation assay, our data showed that EZH2 was expressed at a higher level in peripheral blood mononuclear cells (PBMCs) of septic patients than those of healthy donors (HDs), and EZH2 was also expressed at a higher level in lipopolysaccharide (LPS)-induced PBMCs and non-small cell lung cancer (A549) cells. EZH2 inhibitor (GSK343) downregulated the proliferation ability of A549 cells in a concentration-dependent manner, parallel with the decreased expression level of PD-L1. Similarly, GSK343 inhibited PD-L1 protein expression and downregulated the level of proinflammatory factors in LPS-induced PBMCs. In the co-culture system of PBMCs and human type II alveolar epithelial cells (ATIIs), the addition of GSK343 to PBMCs significantly downregulated the apoptosis of LPS-induced ATIIs. (4) Conclusions: This study illustrated that EZH2 inhibition could ameliorate A549 cell proliferation and LPS-induced ATII apoptosis in parallel with downregulation of PD-L1 protein expression, which provided new insights into molecular signaling networks involved in the pathogenetics of SALI and NSCLC

    Moisturizing and Antioxidant Effects of <i>Artemisia argyi</i> Essence Liquid in HaCaT Keratinocytes

    No full text
    Artemisia argyi essence liquid (AL) is an aqueous solution extracted from A. argyi using CO2 supercritical fluid extraction. There have been few investigations on the aqueous solution of A. argyi extracted via CO2 supercritical fluid extraction. This study aimed to explore the moisturizing and antioxidant effects of AL and to clarify the potential mechanism underlying those effects. Expression levels of skin moisture-related components and the H2O2-induced oxidative stress responses in human keratinocyte cells were measured via quantitative RT-qPCR, Western blot, and immunofluorescence. Our results showed that AL enhanced the expression of AQP3 and HAS2 by activating the EGFR-mediated STAT3 and MAPK signaling pathways. In addition, AL can play an antioxidant role by inhibiting the NF-ÎșB signaling pathway and activating the Nrf2/HO-1 signaling pathway, consequently increasing the expression of antioxidant enzymes (GPX1, SOD2) and decreasing the production of reactive oxygen species (ROS). This study revealed that AL could be used as a potential moisturizing and antioxidant cosmetic ingredient

    Fasting-mimicking diet alleviates inflammatory pain by inhibiting neutrophil extracellular traps formation and neuroinflammation in the spinal cord

    No full text
    Abstract Background Neutrophil extracellular traps (NETs) promote neuroinflammation and, thus, central nervous system (CNS) disease progression. However, it remains unclear whether CNS-associated NETs affect pain outcomes. A fasting-mimicking diet (FMD) alleviates neurological disorders by attenuating neuroinflammation and promoting nerve regeneration. Hence, in this study, we explore the role of NETs in the CNS during acute pain and investigate the role of FMD in inhibiting NETs and relieving pain. Methods The inflammatory pain model was established by injecting complete Freund’s adjuvant (CFA) into the hind paw of mice. The FMD diet regimen was performed during the perioperative period. PAD4 siRNA or CI-amidine (PAD4 inhibitor) was used to inhibit the formation of NETs. Monoamine oxidase-B (MAO-B) knockdown occurred by AAV-GFAP-shRNA or AAV-hSyn-shRNA or was inhibited by selegiline (an MAO-B inhibitor). The changes in NETs, neuroinflammation, and related signaling pathways were examined by western blot, immunofluorescence, ELISA, and flow cytometry. Results In the acute phase of inflammatory pain, NETs accumulate in the spinal cords of mice. This is associated with exacerbated neuroinflammation. Meanwhile, inhibition of NETs formation alleviates allodynia and neuroinflammation in CFA mice. FMD inhibits NETs production and alleviates inflammatory pain, which is enhanced by treatment with the NETs inhibitor CI-amidine, and reversed by treatment with the NETs inducer phorbol 12-myristate 13-acetate (PMA). Mechanistically, the neutrophil-recruiting pathway MAO-B/5-hydroxyindoleacetic acid (5-HIAA) / G-protein-coupled receptor 35 (GPR35) and NETs-inducing pathway MAO-B/ Reactive oxygen species (ROS) are significantly upregulated during the development of inflammatory pain. MAO-B is largely expressed in astrocytes and neurons in the spinal cords of CFA mice. However, knockdown or inhibition of MAO-B effectively attenuates CFA-induced inflammatory pain, NETs formation, and neuroinflammation in the spinal cord. Moreover, within rescue experiments, MAO-B inhibitors synergistically enhance FMD-induced pain relief, NETs inhibition, and neuroinflammation attenuation, whereas supplementation with MAO-B downstream molecules (i.e., 5-HIAA and PMA) abolished this effect. Conclusions Neutrophil-released NETs in the spinal cord contribute to pain development. FMD inhibits NETs formation and NETs-induced neuroinflammation by inhibiting the MAO-B/5-HIAA/GPR35 and MAO-B/ROS pathways in astrocytes and neurons, thereby relieving pain progression. Video Abstrac

    Microwave-Assisted Synthesis of Luminescent Carbonaceous Nanoparticles as Silkworm Feed for Fabricating Fluorescent Silkworm Silk

    No full text
    In biomedical engineering, optics, and photonics, fluorescent silkworm silk has many potential applications, but its complex preparation process and the environmental pollution of corresponding chemical dyeing methods hinder its development. Herein, we provide a green and effective method for fabricating fluorescent silkworm silk with enhanced mechanical properties. Citric acid and urea were selected as raw materials for synthesizing carbon dots (CDs), which were applied as additives of silkworm feed to produce fluorescent silkworm silks by microwave-assisted methods. The results showed that a diet of mulberry leaf with 0.5 wt% CDs was safe for silkworms and did not affect silk yield. CDs rapidly entered silkworms and accumulated in their blood and silk glands. After feeding for 90 min, the silk gland fluorescence appeared prominent. Compared with ordinary silk, the highest elongation at break of the CD-modified silk was 22.24%, and the breaking strength was 28.07 MPa, which were increases of 5.05 and 22.84%, respectively. The CD-modified silk displayed intrinsic blue fluorescence when exposed to a 405 nm laser, exhibited no cytotoxic effect on L929 cells and had excellent cell adhesion. The strategy proposed in this work is not only environmentally friendly but can also produce high-quality fluorescent silk on a large scale

    A Soft-Reference Breast Ultrasound Image Quality Assessment Method That Considers the Local Lesion Area

    No full text
    The quality of breast ultrasound images has a significant impact on the accuracy of disease diagnosis. Existing image quality assessment (IQA) methods usually use pixel-level feature statistical methods or end-to-end deep learning methods, which focus on the global image quality but ignore the image quality of the lesion region. However, in clinical practice, doctors’ evaluation of ultrasound image quality relies more on the local area of the lesion, which determines the diagnostic value of ultrasound images. In this study, a global–local integrated IQA framework for breast ultrasound images was proposed to learn doctors’ clinical evaluation standards. In this study, 1285 breast ultrasound images were collected and scored by experienced doctors. After being classified as either images with lesions or images without lesions, they were evaluated using soft-reference IQA or bilinear CNN IQA, respectively. Experiments showed that for ultrasound images with lesions, our proposed soft-reference IQA achieved PLCC 0.8418 with doctors’ annotation, while the existing end-to-end deep learning method that did not consider the local lesion features only achieved PLCC 0.6606. Due to the accuracy improvement for the images with lesions, our proposed global–local integrated IQA framework had better performance in the IQA task than the existing end-to-end deep learning method, with PLCC improving from 0.8306 to 0.8851
    corecore